Research Paper Volume 8, Issue 11 pp 2827—2847
Tethering telomerase to telomeres increases genome instability and promotes chronological aging in yeast
- 1 The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- 2 School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
Received: August 18, 2016 Accepted: September 30, 2016 Published: November 13, 2016
https://doi.org/10.18632/aging.101095How to Cite
Abstract
Chronological aging of the yeast Saccharomyces cerevisiae is attributed to multi-faceted traits especially those involving genome instability, and has been considered to be an aging model for post-mitotic cells in higher organisms. Telomeres are the physical ends of eukaryotic chromosomes, and are essential for genome integrity and stability. It remains elusive whether dysregulated telomerase activity affects chronological aging. We employed the CDC13-EST2 fusion gene, which tethers telomerase to telomeres, to examine the effect of constitutively active telomerase on chronological lifespan (CLS). The expression of Cdc13-Est2 fusion protein resulted in overlong telomeres (2 to 4 folds longer than normal telomeres), and long telomeres were stably maintained during long-term chronological aging. Accordingly, genome instability, manifested by accumulation of extra-chromosomal rDNA circle species, age-dependent CAN1 marker-gene mutation frequency and gross chromosomal rearrangement frequency, was significantly elevated. Importantly, inactivation of Sch9, a downstream kinase of the target of rapamycin complex 1 (TORC1), suppressed both the genome instability and accelerated chronological aging mediated by CDC13-EST2 expression. Interestingly, loss of the CDC13-EST2 fusion gene in the cells with overlong telomeres restored the regular CLS. Altogether, these data suggest that constitutively active telomerase is detrimental to the maintenance of genome stability, and promotes chronological aging in yeast.