Abstract

Vascular calcifications are frequent in chronic renal disease and are associated to significant cardiovascular morbidity and mortality. The long term predictive value of coronary artery calcifications detected by multi-layer spiral computed tomography for major cardiovascular events was evaluated in non-diabetic Caucasian patients on maintenance hemodialysis free of clinical cardiovascular disease. Two-hundred and five patients on maintenance hemodialysis were enrolled into this observational, prospective cohort study. Patients underwent a single cardiac multi-layer spiral computed tomography. Calcium load was quantified and patients grouped according to the Agatston score: group 1 (Agatston score: 0), group 2 (Agatston score 1-400), group 3 (Agatston score 401-1000) and group 4 (Agatston score >1000). Follow-up was longer than seven years. Primary endpoint was death from a major cardiovascular event. Actuarial survival was calculated separately in the four groups with Kaplan-Meier method. Patients who died from causes other than cardiovascular disease and transplanted patients were censored. The “log rank” test was employed to compare survival curves. One-hundred two patients (49.7%) died for a major cardiovascular event during the follow-up period. Seven-year actuarial survival was more than 90% for groups 1 and 2, but failed to about 50% for group 3 and to <10% for group 4. Hence, Agatston score >400 predicts a significantly higher cardiovascular mortality compared with Agatston score <400 (p<0.0001); furthermore, serum Parathyroid hormone levels > 300 pg/l were associated to a lower survival (p < 0.05). Extended coronary artery calcifications detected by cardiac multi-layer spiral computed tomography, strongly predicted long term cardiovascular mortality in non-diabetic Caucasian patients on maintenance hemodialysis. Moreover, it was not related to conventional indices of atherosclerosis, but to other non-traditional risk factors, as serum Parathyroid hormone levels. A full cost-benefit analysis is however necessary to justify a widespread use of cardiac multi-layer spiral computed tomography in clinical practice.