Research Paper Volume 5, Issue 4 pp 315—327

Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila

Julia Hoffmann1, , Renja Romey1,2, , Christine Fink1, , Li Yong1, , Thomas Roeder1, ,

  • 1 University of Kiel, Dept. of Zoophysiology II, 24098 Kiel, Germany
  • 2 Biocenter Grindel and Zoological Museum, AG Molekulare Evolutionsbiologie, 20146 Hamburg, Germany

Received: April 16, 2013       Accepted: April 27, 2013       Published: April 29, 2013      

https://doi.org/10.18632/aging.100553
How to Cite

Copyright: © 2013 Hoffmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Sir2 is the most intensively discussed longevity gene in current aging research. Although, the gene encoding for a NAD+-dependent histone deacetylase initially was found to extend lifespan of various organisms ranging from yeast to mammals, serious doubts regarding its role in longevity have been expressed recently. In this study, we tested whether tissue-specific overexpression of Sir2 in the adult fat body can extend lifespan when compared to genetically identical controls. We also wanted to elucidate the mechanisms by which fat body Sir2 promotes longevity by studying the phenotypic and transcriptional changes in the fat body. We found that moderate (3-fold) Sir2 overexpression in the fat body during adulthood only can promote longevity in both sexes by roughly 13 %. In addition, we obtained transcriptional profiles elicited by this overexpression and propose a role for Sir2 in lipid droplet biology especially under conditions of starvation. Furthermore, our data do not support the idea of Sir2 mediating the response to dietary restriction (DR) because transcriptional profiles of fat bodies after DR or Sir2 overexpression do not match. This study provides additional independent evidence for the concept of Sir2 as a longevity gene and as a promising pharmacological target to cure age-related diseases.

Abbreviations

DR: dietary restriction; ns: not significant.