Abstract

We have recently reported that progeroid Zmpste24−/− mice, which exhibit multiple defects that phenocopy Hutchinson-Gilford progeria syndrome, show a profound dysregulation of somatotropic axis, mainly characterized by the occurrence of very high circulating levels of growth hormone (GH) and a drastic reduction in insulin-like growth factor-1 (IGF-1). We have also shown that restoration of the proper GH/IGF-1 balance in Zmpste24−/− mice by treatment with recombinant IGF-1 delays the onset of many progeroid features in these animals and significantly extends their lifespan. Here, we summarize these observations and discuss the importance of GH/IGF-1 balance in longevity as well as its modulation as a putative therapeutic strategy for the treatment of human progeroid syndromes.