Research Paper Volume 16, Issue 20 pp 13132—13144
OSBPL2 inhibition leads to apoptosis of cochlea hair cells in age-related hearing loss by inhibiting the AKT/FOXG1 signaling pathway
- 1 Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
- 2 Department of Cardiothoracic Surgery, The First People’s Hospital of Changzhou, Jiangsu 213003, China
Received: March 1, 2024 Accepted: July 19, 2024 Published: October 30, 2024
https://doi.org/10.18632/aging.206138How to Cite
Copyright: © 2024 Li-Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Age-related hearing loss (AHL) is a prevalent and multifaceted condition that significantly impacts a substantial portion of the aging population. Oxysterol Binding Protein-like 2 (OSBPL2) has been identified as a causal gene for hearing loss. However, its role in AHL is still unclear. In this study, we investigated the effect of OSBPL2 on the survival of cochlea hair cells. To simulate AHL in vitro, hair cell-like inner ear cells (HEI-OC1) were exposed to H2O2 treatment. OSBPL2 expression was significantly increased in HEI-OC1 cells after H2O2 treatment. OSBPL2 knockdown augmented cell death and apoptosis in H2O2-induced HEI-OC1 cells. Besides, H2O2 treatment also led to the inactivation of the AKT and FOXG1 signaling pathways in HEI-OC1 cells. Mechanistically, OSBPL2 silencing reinforced the inactivation of the FOXG1 signaling pathway in H2O2-treated HEI-OC1 cells by inhibiting the AKT signaling pathway. Under H2O2 treatment, AKT inhibition by MK2206 augmented the apoptosis of HEI-OC1 cells; on the contrary, AKT activation by SC79 treatment partially rescued the apoptosis of OSBPL2-knockdown HEI-OC1 cells. In addition, FOXG1 silencing significantly reversed the effects of AKT activation on OSBPL2-knockdown HEI-OC1 cells. Moreover, OSBPL2 expression and the activation status of the AKT/FOXG1 signaling pathway were confirmed in the cochleae of young and old C57BL/6 mice. In conclusion, our study provides evidence that OSBPL2 inhibition sensitizes HEI-OC1 cells to H2O2-induced apoptosis via inactivation of the AKT/FOXG1 signaling pathway, suggesting that OSBPL2 acts as an important regulator in AHL.