Abstract

To evaluate the protective effect of LIPUS at the early stage of brain trauma in rats, 45 rats were randomly divided into 3 groups: sham (n = 15), TBI (n = 15) and LIPUS treatment groups (n = 15). Ipsilateral and contralateral cortical and thalamic parameters obtained by diffusion tensor imaging (DTI) and fast low-angle shot magnetic resonance imaging (FLASH-MRI) were measured at different times after trauma. For fractional anisotropy (FA) and T2* values, two-way repeated measures ANOVA with Tukey’s post hoc was used for intergroup comparisons. With observation time prolonged, the FA values of the ipsilateral cortex in the TBI group gradually increased and were significantly higher than those in the LIPUS treatment group on Day 7 (adjusted P = 0.0067). FA values in the contralateral cortex decreased at this time and were significantly lower than those in the LIPUS treatment group (adjusted P = 0.0192). Meanwhile, compared with LIPUS group, FA values were significantly higher in the injured thalamus (adjusted P = 0.0025). Combined with correlation analysis, FA values were positively correlated with neuronal damage (P = 0.0148, r2 = 0.895). At 7 days after trauma, T2* values in the ipsilateral cortex of the TBI group were significantly lower. After analysis of ferritin content and correlation, we found that T2* values were negatively correlated with ferritin (P = 0.0259, r2 = −0.849). By measuring post-traumatic changes in FA and T2* values, it is possible to demonstrate a neuronal protective effect of LIPUS in the early phase of TBI rats and promote brain rehabilitation.