Research Paper Volume 16, Issue 13 pp 11103—11116
HOXC4 promotes proliferation of pancreatic cancer cells by increasing LDHA-mediated glycolysis
- 1 College of Clinical Medicine, Guizhou Medical University, Guiyang, China
- 2 Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- 3 Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- 4 School of Public Health, Guizhou Medical University, Guiyang, China
Received: October 30, 2023 Accepted: May 3, 2024 Published: July 9, 2024
https://doi.org/10.18632/aging.206008How to Cite
Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Homeobox C4 (HOXC4) is a member of homeobox family and acts as a transcription factor in regulating morphological development. The current study aimed to determine its role in pancreatic cancer (PC). Bioinformatics analysis was employed to assess the expression and clinical significance of HOXC4 in PC, while the expression of HOXC4 was further confirmed in PC tissues through quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The impact of HOXC4 on PC cell proliferation was evaluated using various assays including Cell Counting Kit-8, colony formation, apoptosis detection, cell cycle analysis, and subcutaneous tumorigenesis. Extracellular acidification rate, glucose uptake, and lactate production measurements were detected to examine the impact of HOXC4 on glycolysis. The relationship between HOXC4 and lactate dehydrogenase A (LDHA) was investigated using CHIP assay, luciferase reporter assay, and western blot. Notably, there was a substantial increase in HOXC4 expression in PC, and patients with elevated HOXC4 levels exhibited shorter survival durations. HOXC4 knockdown resulted in significantly reduced proliferation and colony formation in PC cells, accompanied by increased apoptosis and G1 phase arrest. The overexpression of HOXC4 resulted in contrasting effects. In vivo, the proliferation of PC cells was diminished upon the knockdown of HOXC4. HOXC4 exhibited an increase in LDHA expression by binding to its promoter. The suppressive effects of HOXC4 knockdown on PC cells were counteracted upon the restoration of LDHA. In conclusion, HOXC4 promoted the proliferation of PC cells by increasing LDHA-mediated glycolysis. HOXC4 can act as a target for PC therapy.