Abstract

Background: Some preceding researches have observed that certain neurological disorders, such as Alzheimer’s disease and multiple sclerosis, may affect breast cancer risk. However, whether there are causal relationships between these neurological conditions and breast cancer is inconclusive. This study was designed to explore whether neurological disorders affected the risks of breast cancer overall and of the two subtypes (ER+ and ER-).

Methods: In the course of this study, genome-wide association study (GWAS) data for nine neurological diseases (Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, myasthenia gravis, generalized epilepsy, intracerebral haemorrhage, cerebral atherosclerosis, brain glioblastoma, and benign meningeal tumour) were collected from the Complex Trait Genetics lab and the MRC Integrative Epidemiology Unit, and single-nucleotide polymorphisms (SNPs) extensively associated with these neurological ailments had been recognized as instrumental variables (IVs). GWAS data on breast cancer were collected from the Breast Cancer Association Consortium (BCAC). Two-sample Mendelian randomization (MR) analyses as well as multivariable MR analyses were performed to determine whether these SNPs contributed to breast cancer risk. Additionally, the accuracy of the results was evaluated using the false discovery rate (FDR) multiple correction method. Both heterogeneity and pleiotropy were evaluated by analyzing sensitivities.

Results: According to the results of two-sample MR analyses, Alzheimer’s disease significantly reduced the risks of overall (OR 0.925, 95% CI [0.871−0.982], P = 0.011) and ER+ (OR 0.912, 95% CI [0.853−0.975], P = 0.007) breast cancer, but there was a negative result in ER- breast cancer. However, after multiple FDR corrections, the effect of Alzheimer’s disease on overall breast cancer was not statistically significant. In contrast, multiple sclerosis significantly increased ER+ breast cancer risk (OR 1.007, 95% CI [1.003-1.011], P = 0.001). In addition, the multivariable MR analyses showed that Alzheimer’s disease significantly reduced the risk of ER+ breast cancer (IVW: OR 0.929, 95% CI [0.864-0.999], P=0.047; MR-Egger: OR 0.916, 95% CI [0.846-0.992], P=0.031); however, multiple sclerosis significantly increased the risk of ER+ breast cancer (IVW: OR 1.008, 95% CI [1.003-1.012], P=4.35×10-4; MR-Egger: OR 1.008, 95% CI [1.003-1.012], P=5.96×10-4). There were no significant associations between the remainder of the neurological diseases and breast cancer.

Conclusions: This study found the trends towards a decreased risk of ER+ breast cancer in patients with Alzheimer’s disease and an increased risk in patients with multiple sclerosis. However, due to the limitations of Mendelian randomization, we cannot determine whether there are definite causal relationships between neurological diseases and breast cancer risk. For conclusive evidences, more prospective randomized controlled trials will be needed in the future.