Research Paper Volume 16, Issue 2 pp 1796—1807
Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression
- 1 Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
- 2 Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
Received: September 13, 2023 Accepted: December 13, 2023 Published: January 19, 2024
https://doi.org/10.18632/aging.205460How to Cite
Copyright: © 2024 Tan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Background: Circular RNAs (circRNAs) represent a subset of non-coding RNAs implicated in the regulation of diverse biological processes, including tumorigenesis. However, the expression and functional implications of circ0060467 in hepatocellular carcinoma (HCC) remain elusive. In this study, we aimed to elucidate the role of circ0060467 in modulating the progression of HCC.
Methods: Differentially expressed circRNAs in HCC tissues were identified through circRNA microarray assays. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays revealed the upregulation of circ0060467 in both HCC cell lines and tissues. Various assays were conducted to investigate the roles of circ0060467 in HCC progression. Additionally, RNA immunoprecipitation (RIP) assays and luciferase assays were carried out to assess the interactions between circ0060467, microRNA-6085 (miR-6085), apoptosis-inducing factor mitochondria-associated 2 (AIFM2), and glutathione peroxidase 4 (GPX4) in HCC.
Results: Microarray and qRT-PCR analyses demonstrated a marked elevation of circ0060467 in HCC tissues and cell lines. Knockdown of circ0060467 suppressed HCC cell proliferation. Luciferase reporter and RIP assays confirmed the binding of circ0060467, AIFM2, and GPX4 to miR-6805. Subsequent experiments revealed that circ0060467 competes with AIFM2 and GPX4, thereby inhibiting cancer cell ferroptosis by binding to miR-6085 and promoting hepatocellular carcinoma progression.
Conclusions: Collectively, circ0060467 modulates the levels of AIFM2 and GPX4, crucial regulators of tumor cell ferroptosis, by acting as a sponge for miR-6085 in HCC. Thus, circ0060467 may represent a novel diagnostic marker and therapeutic target for HCC.