Research Paper Volume 16, Issue 2 pp 1182—1191
Myeloid-specific knockout of Notch-1 inhibits MyD88- and TRIF-mediated TLR signaling pathways by regulating oxidative stress-SHP2 axis, thus restraining aneurysm progression
- 1 Department of Cardiovascular Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- 2 Institute of Prevention and Control of Non-communicable Chronic Diseases, Hebei Province Center for Disease Prevention and Control, Shijiazhuang 050021, China
Received: May 12, 2023 Accepted: November 15, 2023 Published: January 26, 2024
https://doi.org/10.18632/aging.205392How to Cite
Copyright: © 2024 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Objective: Notch-1 is a signal regulatory protein with extensive effects in myeloid cells, but its role in aneurysms remains to be fully clarified. In this study, therefore, the aneurysm mouse model with myeloid-specific knockout of Notch-1 was established to observe the role of Notch-1 in aneurysm progression.
Methods and Results: The effect of Notch-1 was assessed by pathological staining and Western blotting. It was found that after myeloid-specific knockout of Notch-1 in the aneurysm mouse model, the area of aneurysms and the macrophage infiltration were significantly reduced, the damage to arterial elastic plates was significantly relieved, and the oxidative stress level significantly declined. The results of Western blotting showed that after myeloid-specific knockout of Notch-1, the levels of oxidative stress-related proteins p22 and p47 in aneurysm tissues significantly declined, accompanied by a significant increase in the protein level of Src homology 2 domain-containing tyrosine phosphatase-2 (SHP2). In addition, the levels of phosphorylated myeloid differential protein-88 (MyD88), TIR domain-containing adaptor-inducing interferon-β (TRIF) and nuclear factor-κB (NF-κB), and inflammatory cytokines interferon-γ (IFN-γ), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) also significantly decreased after myeloid-specific knockout of Notch-1. Following myeloid-specific knockout of Notch-1, the phagocytic capacity of macrophages was enhanced by promoting the SHP2 signaling pathway.
Conclusion: Notch-1 in monocytes/macrophages can activate the Toll-like receptor (TLR)-mediated inflammatory and stress responses by activating oxidative stress and inhibiting the SHP2 protein expression, thus facilitating aneurysm progression.