Abstract

This study aimed to evaluate the potential of cluster of differentiation 86 (CD86) as a biomarker in high-grade glioma (HGG). The TCGA and TCIA databases were used to obtain the CD86 expression value, clinical data, and MRI images of HGG patients. Prognostic values were assessed by the Kaplan-Meier method, Receiver operating characteristic curve (ROC), Cox regression, logistic regression, and nomogram analyses. CD86-associated pathways were also explored. We found that CD86 was significantly upregulated in HGG compared with the normal group. Survival analysis showed a significant association between CD86 high expression and shorter overall survival time. Its independent prognostic value was also confirmed. These results suggested the possibility of CD86 as a biomarker in HGG. We also innovatively established 2 radiomics models with Support Vector Machine (SVM) and Logistic regression (LR) algorithms to predict the CD86 expression. The 2 models containing 5 optimal features by SVM and LR methods showed similar favorable performance in predicting CD86 expression in the training set, and their performance were also confirmed in validation set. These results indicated the successful construction of a radiomics model for non-invasively predicting biomarker in HGG. Finally, pathway analysis indicated that CD86 might be involved in the natural killer cell-mediated cytotoxicity in HGG progression.