Abstract

Objective: To investigate the alteration of PV interneurons in ALS mainly focusing its dynamic changes and its relationship with motor neurons and ErbB4 signaling.

Methods: SOD1G93A mice were used as ALS model. ALS animals were divided into different groups according to birth age: symptomatic prophase (50~60 days), symptomatic phase (90~100 days), and symptomatic progression (130~140 days). Immunofluorescence was performed for measurement of PV-positive interneurons, MMP-9, ChAT, NeuN and ErbB4. RT-qPCR and western blot were used to determine the expression of PV and MMP-9.

Results: PV expression was remarkably higher in the anterior horn of gray matter compared with posterior horn and area in the middle of gray matter in control mice. In ALS mice, PV, MMP-9 and ErbB4 levels were gradually decreased along with onset. PV, MMP-9 and ErbB4 levels in ALS mice were significantly down-regulated than control mice after onset, indicating the alteration of PV interneurons, FαMNs and ErbB4. SαMNs levels only decreased remarkably at symptomatic progression in ALS mice compared with control mice, while γMNs levels showed no significant change during whole period in all mice. MMP-9 and ErbB4 were positively correlated with PV. NRG1 treatment significantly enhanced the expression of ErBb4, PV and MMP-9 in ALS mice.

Conclusion: PV interneurons decrease is along with FαMNs and ErbB4 decrease in ALS mice.