Abstract

ZBTB34 is a novel zinc finger protein with an unknown function. In this study, the gene expression and survival prognosis of ZBTB34 were analyzed across tumors based on the TCGA datasets. According to the bioinformatics analysis and qPCR results, liver hepatocellular carcinomas exhibit a high level of ZBTB34 expression. Additionally, the experiment supported the bioinformatics analysis findings that ZBTB34 expression was regulated by miR-125b-5p and that ZBTB34 affected ZBTB10, POLR1B, and AUH expression in HepG2 cells. Biological software analysis further revealed that ZBTB34 contains a monopartite nuclear localization signal (NLS). Arginine and lysine inside the putative NLS were substituted using the alanine-scanning mutagenesis method. The findings showed that the ability of ZBTB34 to enter the nucleus was abolished by the alanine substitution of the sequence 320RGGRARQKRA329 and the mutation of Lys327 and Arg328 residues. ZBTB34 was co-immunoprecipitated with importin α1, importin α3, importin α4, and importin β1, according to the results of the co-immunoprecipitation assay. In conclusion, ZBTB34 is a hepatocellular carcinoma-associated protein with a monopartite NLS. The nuclear import of ZBTB34 is mediated by importin α1, importin α3, importin α4, and importin β1. ZBTB34 performs its biological functions via a putative miR-125b-5p/ZBTB34/(ZBTB10, POLR1B, and AUH) signaling axis in HepG2 cells.