Abstract

HBV-associated hepatitis B virus x protein (HBx) plays multiple roles in the development of hepatocellular carcinoma. In our prior study, we discovered that miR-187-5p expression was inhibited by HBx. To investigate the underlying molecular mechanism of HBx-mediated miR-187-5p downregulation in hepatocellular carcinoma cells, effects of HBx and miR-187-5p on hepatoma carcinoma cell were observed, as well as their interactions. Through in vitro and in vivo experiments, we demonstrated that overexpression of miR-187-5p inhibited proliferation, migration, and invasion. Simultaneously, we observed a dysregulation in the expression of miR-187-5p in liver cancer cell lines, which may be attributed to transcriptional inhibition through the E2F1/FoxP3 axis. Additionally, we noted that HBx protein is capable of enhancing the expression of E2F1, a transcription factor that promotes the expression of FoxP3. In conclusion, our results suggest that the inhibitory effect of HBx on miR-187-5p is mediated through the E2F1/FoxP3 axis. As shown in this work, HBx promotes hepatoma carcinoma cell proliferation, migration, and invasion through the E2F1/FoxP3/miR-187 axis. It provides a theoretical basis for finding therapeutic targets that will help clinic treatment for HCC.