Abstract

Abstract: Dysregulation of the ubiquitin-proteasome system (UPS) pathway greatly affects uncontrolled proliferation, genomic instability, and carcinogenesis, particularly in those with renal papillary cell carcinoma (PRCC). However, there is little information at the molecular level about the full link between changes in the genes involved in ubiquitin-mediated proteolysis and PRCC.

Methods: The Cancer Genome Atlas (TCGA) and GeneCards databases were utilized to find the clinical data and gene expression patterns of patients with PRCC. Univariate Cox regression analysis and absolute shrinkage and selection operator (LASSO) analyses identified a risk signature formed by ten optimal UPS genes. The predictive value of the risk signature in TCGA-PRCC cohorts was evaluated using Kaplan-Meier analysis and receiver operating characteristic (ROC) curves. By utilizing GO enrichment and the KEGG pathway, the interactions of differentially expressed genes connected to ubiquitin-mediated proteolysis were functionally examined. The protein expression of the hub genes was affirmed using the Human Protein Atlas (HPA) database. The effectiveness of particular CDC20 and UBE2C in vitro was confirmed by experimental research.

Results: Ten of the best ubiquitin-mediated proteolysis genes (UBE2C, DDB2, CBLC, BIRC3, PRKN, UBE2O, SIAH1, SKP2, UBC, and CDC20) were detected to create a risk signature. The high-risk score group stratified was associated with advanced tumor status and poor survival of PRCC patients. 10 genes were also found to be associated with the cell cycle pathway and ubiquitin-mediated proteolysis to GO and KEGG analysis. Of these 10 genes, CDC20 and UBE2C are highly expressed in tumor tissue and correlated with cancer immunity founded on the analyses of the expression of human protein atlas and TISIDB. The downregulation of UBE2C facilitated tumor inhibition and the anti-immune effect was confirmed by in vitro experiments.

Conclusion: Our results indicate that the risk model created from the ubiquitin-mediated proteolysis genes can be reliably and accurately predict the prognosis of PRCC patients, highlighting its targeted value for PRCC treatment. Particularly, the expression of UBE2C may be crucial for the prognosis and immunological treatment of renal cancer.