Research Paper Volume 14, Issue 17 pp 7137—7155
Identification of alanine aminotransferase 1 interaction network via iTRAQ-based proteomics in alternating migration, invasion, proliferation and apoptosis of HepG2 cells
- 1 Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
- 2 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, P.R. China
Received: February 16, 2022 Accepted: August 31, 2022 Published: September 14, 2022
https://doi.org/10.18632/aging.204286How to Cite
Copyright: © 2022 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Objective: To investigate the mechanism of alanine aminotransferase 1 (ALT1) in the progression of HCC, the differentially expressed proteins (DEPs) in the ALT1 interaction network were identified by targeted proteomic analysis.
Methods: Wound healing and transwell assays were conducted to assess the effect of ALT1 on cellular migration and invasion. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were performed to identify alterations in proliferation and apoptosis. After coimmunoprecipitation processing, mass spectrometry with iso-baric tags for relative and absolute quantitation was utilized to explore the protein interactions in ALT1 knockdown HepG2 cells.
Results: The results showed that ALT1 knockdown inhibits the migration, invasion, proliferation of HepG2 cells, and promotes apoptosis. A total of 116 DEPs were identified and the bioinformatics analysis suggested that the ALT1-interacting proteins were primarily associated with cellular and metabolic processes. Knockdown of ALT1 in HepG2 cells reduced the expression of Ki67 and epithelial cell adhesion molecule (EP-CAM), while the expression of apoptosis-stimulating protein 2 of p53 (ASPP2) was increased significantly. Suppression of the ALT1 and EP-CAM expression contributed to alterations in epithelial–mesenchymal transition (EMT) -associated markers and matrix metalloproteinases (MMPs). Additionally, inhibition of ALT1 and Ki67 also decreased the expression of apoptosis and proliferation factors. Furthermore, inhibition of ALT1 and ASPP2 also changed the expression of P53, which may be the signaling pathway by which ALT regulates these biological behaviors.
Conclusions: This study indicated that the ALT1 protein interaction network is associated with the biological behaviors of HepG2 cells via the p53 signaling pathway.