Research Paper Volume 14, Issue 17 pp 7003—7013
UBE2C mediated radiotherapy resistance of head and neck squamous cell carcinoma by regulating oxidative-stress-relative apoptosis
- 1 Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- 2 Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
Received: April 28, 2022 Accepted: August 17, 2022 Published: September 5, 2022
https://doi.org/10.18632/aging.204265How to Cite
Copyright: © 2022 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Purpose: Radiotherapy resistance is the main obstacle in the effective treatment of advanced head and neck squamous cell carcinoma (HNSCC). Increasing scientific opinions present that ubiquitin-conjugating enzyme E2C (UBE2C) might be a target gene acting as an oncogene.
Method: TCGA database was used to analyze the expression of UBE2C in HNSCC patients, and the relationship between UBE2C expression and prognosis. Western blot and RT-PCR were used to assess UBE2C expression before and after radiation. Then, cell viability experiment and colony formation were used to evaluate proliferation after 2 Gy radiation. Cell viability experiment, migration, and invasion were evaluated in the condition of UBE2C knock-down. Western blot and RT-PCR were used to assess the expression of apoptosis and ROS relative gene expression. Then, the xenograft model was used to evaluate the efficacy of radiation combined with UBE2C suppression.
Result: The expression of UBE2C was high in tumors of patients with HNSCC and relatives with poor prognoses. Si-UBE2C cells showed proliferation inhibited and apoptosis enhanced after radiation. Furthermore, the mechanism of UBE2C in HNSCC radioresistance was explored. We performed RT-PCR to find the 4-HNE, which increases oxidative-stress-relative apoptosis in Si-UBE2C cells after radiation.
Conclusions: Through the RT-PCR, WB, cell viability experiment, migration, invasion, and in vivo experiment, UBE2C was confirmed to downregulate oxidative-stress-relative apoptosis induced by radiation and promote the development of malignant tumor cells.