Abstract

Background: Nicorandil will activate ATP-sensitive potassium channel (KATP). However, activation of potassium channels plays an important role in the mechanism of atrial fibrillation (AF) or atrial flutter (AFL). Whether use of nicorandil might contribute to initiation and/or perpetuation of AF/AFL remained unknown. We determined the relationship between use of nicorandil and risk of atrial fibrillation and determined its molecular mechanism.

Methods: We performed a nested case-control study using a cohort from the National Health Insurance Research Database (NHIRD) of Taiwan. The association between nicorandil use and risk of atrial fibrillation/flutter was estimated by logistic regression model. We also performed molecular, cellular and animal studies to explain the association.

Results: A total of 715 individuals who experienced AF/atrial flutter were matched to 72,215 controls. New use of nicorandil was found to be associated with increased risk for AF/AFL (odds ratio [OR], 2.34; 95% CI 1.07–5.13) compared to nitrate use. We found the expression of KATP subunits Kir6.2 and SUR2A in human and rat left atrial tissues. Furthermore, nicorandil directly shortened action potential duration (APD) in rat left atrium and shortened the QT interval of cultured human induced pluripotent stem cell (iPSC) derived cardiomyocytes (iPSC-CMs).

Conclusions: Use of nicorandil was found to be associated with increased risk of AF/AFL. We also showed the expression of KATP subunits in human atria, and a possible mechanism that use of nicorandil increases the risk of AF through activation of KATP and shortening of atrial APD.