Research Paper Volume 14, Issue 13 pp 5590—5610
A pan-cancer analysis confirms PTPN11’s potential as a prognostic and immunological biomarker
- 1 Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi 710061, China
- 2 Department of Reproduction Gynecology, Northwest Women and Children’s Hospital, Xi’an, Shaanxi 710061, China
Received: March 29, 2022 Accepted: July 1, 2022 Published: July 8, 2022
https://doi.org/10.18632/aging.204171How to Cite
Copyright: © 2022 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) is a multifunctional tyrosine phosphatase and has a significant part in many types of tumors. As of yet, neither the expression profile of PTPN11 nor its significance in pan-cancer diagnosis has been clarified. With the assistance of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we have comprehensively mapped the expression profiles, prognostic significance, genetic alteration, phosphorylation status, infiltration of immune cells, and functional properties of PTPN11 in 33 human tumors. There was an inconsistent expression of PTPN11 in different tumors, and the alteration of PTPN11 expression predicted the survival outcomes of cancer patients. A significant association was found between the genetic alteration levels of PTPN11 and some tumor predictions. Besides, the reduced PTPN11 phosphorylation levels were observed in breast cancer, clear cell RCC, head and neck carcinoma, and lung adenocarcinoma (LUAD). Furthermore, there was a significant association between PTPN11 expression and infiltration of cancer-associated fibroblasts and endothelial cells, along with tumor mutation burden, microsatellite instability, mismatch repair genes, and immunoregulators. Finally, pathway enrichment analysis demonstrated that PTPN11-associated terms and pathways were involved in malignancy. Taken together, PTPN11 may become a new biomarker and target for cancer therapy.