Research Paper Volume 14, Issue 11 pp 4858—4873
A novel ALG10/TGF-β positive regulatory loop contributes to the stemness of colorectal cancer
- 1 Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin 541004, China
Received: March 1, 2022 Accepted: May 13, 2022 Published: June 9, 2022
https://doi.org/10.18632/aging.204116How to Cite
Copyright: © 2022 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The roles of asparagine-linked glycosylation (ALG) members in tumorigenic process have been widely explored. However, their effects in colorectal cancer progression are still confusing. Here, we screened 12 ALGs’ expression through online datasets and found that ALG10 was mostly upregulated in colorectal cancer tissues. We found that ALG10 knockdown significantly suppressed the expression of stemness markers, ALDH activity, and sphere-formation ability. In vivo tumorigenic analysis indicated that ALG10 knockdown attenuated the tumor-initiating ability and chemoresistance of colorectal cancer cells. Further mechanistic studies showed that ALG10 knockdown suppressed the activity of TGF-β signaling by reducing TGFBR2 glycosylation, which was necessary for ALG10-mediated effects on colorectal cancer stemness; Conversely, TGF-β signaling activated ALG10 gene promoter activity through Smad2’s binding to ALG10 gene promoter and TGF-β signaling promoted the stemness of colorectal cancer cells in an ALG10-dependent manner. This work identified a novel ALG10/TGF-β positive regulatory loop responsible for colorectal cancer stemness.