Abstract

Background: Globally, colorectal cancer (CRC) is one of the most lethal malignant diseases. However, the currently approved therapeutic options for CRC failed to acquire satisfactory treatment efficacy. Tailoring therapeutic strategies for CRC individuals can provide new insights into personalized prediction approaches and thus maximize clinical benefits.

Methods: In this study, a multi-step process was used to construct an immune-related genes (IRGs) based signature leveraging the expression profiles and clinical characteristics of CRC from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. An integrated immunogenomic analysis was performed to determine the association between IRGs with prognostic significance and cancer genotypes in the tumor immune microenvironment (TIME). Moreover, we performed a comprehensive in silico therapeutics screening to identify agents with subclass-specific efficacy.

Results: The established signature was shown to be a promising biomarker for evaluating clinical outcomes in CRC. The immune risk score as calculated by this classifier was significantly correlated with over-riding malignant phenotypes and immunophenotypes. Further analyses demonstrated that CRCs with low immune risk scores achieved better therapeutic benefits from immunotherapy, while AZD4547, Cytochalasin B and S-crizotinib might have potential therapeutic implications in the immune risk score-high CRCs.

Conclusions: Overall, this IRGs-based signature not only afforded a useful tool for determining the prognosis and evaluating the TIME features of CRCs, but also shed new light on tailoring CRCs with precise treatment.