Research Paper Volume 13, Issue 15 pp 19643—19656
The protective effect of allicin on myocardial ischemia-reperfusion by inhibition of Ca2+ overload-induced cardiomyocyte apoptosis via the PI3K/GRK2/PLC-γ/IP3R signaling pathway
- 1 Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- 2 Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
- 3 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
Received: January 10, 2021 Accepted: July 21, 2021 Published: August 3, 2021
https://doi.org/10.18632/aging.203375How to Cite
Copyright: © 2021 Gao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Purpose: To investigate the protective effect and mechanism of allicin on myocardial ischemia-reperfusion (MI/R) injury.
Methods: We investigated the mechanisms by which allicin attenuated the MI/R injury by focusing on phosphoinositide 3-kinase, G protein coupled receptor kinases 2, phospholipase Cγ and cardiomyocyte apoptosis. Sixty male mice were randomly assigned into three groups: repeated MI/R (model), sham-operated (control), and MI/R+ allicin group (allicin). Ultrasound examination was used to examine the cardiac function. Masson staining was used to evaluate the myocardial infarct area. TUNEL assay was performed to examine the anti-apoptotic effect of allicin. Differentially expressed genes (DEGs) and pathways were analyzed by mRNA microarray analysis. Immunofluorescence staining and western blot were carried out to detect the effect of allicin on the PI3K. A pan-PLC activator, m-3M3FBS, was applied to investigate whether allicin induced cardiomyocyte apoptosis was via the GRK2/PLC/IP3R signaling pathway.
Results: Masson staining and the TUNEL assay revealed that allicin reduced infarct size and played an anti-apoptotic role in M/IR. Ultrasound examination revealed that allicin improved cardiac function after M/IR injury. Gene ontology analysis indicated that the calcium signaling pathway and PI3KCA(PI3K) were selected. Immunofluorescence staining and western blot exposed that PI3K was activated by allicin during MI/R injury. Fura-2AM staining revealed that the PI3K -mediated GRK2/PLC-γ/IP3R pathway may be involved in the protective effect of allicin on MI/R injury.
Conclusions: Allicin has a protective effect on MI/R injury. This effect might be associated with the inhibition of Ca2+ overload-induced apoptosis and the inhibition of the PI3K -mediated GRK2/PLC-γ/IP3R signaling pathway.