Research Paper Volume 13, Issue 15 pp 19108—19126
Features of age-related response to sleep deprivation: in vivo experimental studies
- 1 Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
- 2 Institute of Information Technologies, Mathematics and Mechanics (ITMM), National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
Received: April 15, 2021 Accepted: July 17, 2021 Published: July 28, 2021
https://doi.org/10.18632/aging.203372How to Cite
Copyright: © 2021 Novozhilova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Insomnia is currently considered one of the potential triggers of accelerated aging. The frequency of registered sleep-wake cycle complaints increases with age and correlates with the quality of life of elderly people. Nevertheless, whether insomnia is actually an age-associated process or whether it acts as an independent stress-factor that activates pathological processes, remains controversial. In this study, we analyzed the effects of long-term sleep deprivation modeling on the locomotor and orienting-exploratory activity, spatial learning abilities and working memory of C57BL/6 female mice of different ages. We also evaluated the modeled stress influence on morphological changes in brain tissue, the functional activity of the mitochondrial apparatus of nerve cells, and the level of DNA methylation and mRNA expression levels of the transcription factor HIF-1α (Hif1) and age-associated molecular marker PLIN2. Our findings point to the age-related adaptive capacity of female mice to the long-term sleep deprivation influence. For young (1.5 months) mice, the modeled sleep deprivation acts as a stress factor leading to weight loss against the background of increased food intake, the activation of animals’ locomotor and exploratory activity, their mnestic functions, and molecular and cellular adaptive processes ensuring animal resistance both to stress and risk of accelerated aging development. Sleep deprivation in adult (7-9 months) mice is accompanied by an increase in body weight against the background of active food intake, increased locomotor and exploratory activity, gross disturbances in mnestic functions, and decreased adaptive capacity of brain cells, that potentially increasing the risk of pathological reactions and neurodegenerative processes.