Abstract

MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PAC). The expression levels and roles of miR-1252-5p in PAC remain unclear. Quantitative real-time PCR and in situ hybridization were used to detect miR-1252-5p expression in PAC cells and human tissues. We studied the gain and loss of function of miR-1252-5p in the PAC cell lines in vitro and in vivo. The direct targets of miR-1252-5p were analyzed using public databases and a dual-luciferase reporter assay. Expression levels of miR-1252-5p are downregulated in PAC cell lines and tissue samples, and its expression is negatively associated with adverse clinical features and poor prognosis. In vitro and in vivo experiments show that miR-1252-5p overexpression inhibits the proliferation, migration, invasion, and epithelial-mesenchymal transition of PAC cells, and miR-1252-5p knockdown enhances these biological behaviors. MiR-1252-5p negatively regulates neural precursor cell expressed, developmentally downregulated 9 (NEDD9) by directly binding its 3'- untranslated region. Further mechanism research revealed that the SRC/STAT3 pathway is involved in miR-1252-5p/NEDD9 mediation of PAC's biological behaviors. We also verified that Myb inhibited miR-1252-5p by directly binding at its promoter. MiR-1252-5p may act as a tumor-suppressing miRNA in PAC and may be a potential therapeutic target for PAC patients.