Research Paper Volume 13, Issue 14 pp 18870—18878
Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model
- 1 Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People’s Republic of China
- 2 Department of Medical Affairs, Zhongshan Hospital, Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, Fujian Province, People’s Republic of China
Received: April 26, 2021 Accepted: July 9, 2021 Published: July 21, 2021
https://doi.org/10.18632/aging.203339How to Cite
Copyright: © 2021 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnea (OSA), is associated with various cardiovascular diseases. In the present study, we assessed the effect of the lipid reducing agent atorvastatin on CIH-induced myocardial oxidative stress and apoptosis in a mouse OSA model. Forty-eight C57BL/6J mice were evenly divided among normoxia + vehicle, normoxia + atorvastatin, CIH + vehicle, and CIH + atorvastatin groups. CIH consisted of a hypoxia-reoxygenation cycle in which oxygen concentrations fluctuated from 21% to 6% and back over two minutes for 8 hours each day (30 events/hour). CIH exposure continued for 12 weeks. Atorvastatin (5 mg/kg) was administered from week 6 through the end of the experiment. CIH increased malondialdehyde levels and decreased superoxide dismutase activity, total antioxidant capacity, and nuclear factor erythroid 2-related factor 2 levels in cardiac tissue, indicating a reduction in antioxidant activity. Atorvastatin significantly reversed those effects (p < 0.05). CIH also increased B-cell lymphoma 2-associated protein X and cleaved caspased-3 levels as well as the myocardial apoptotic rate, as indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Atorvastatin had no effect on those changes (p > 0.05). Thus, atorvastatin administration exerts antioxidant but not anti-apoptotic effects after CIH and may therefore have therapeutic potential in OSA patients with cardiovascular comorbidities.