Abstract

Proliferation and metastasis are important malignant features of pancreatic cancer (PC), but the underlying molecular mechanism is unclear. ZC3HAV1, a PARP family member of proteins-enzymes, has been considered to play a significant part in a variety of biological processes. Nonetheless, the functions of ZC3HAV1 in developing PC are still unknown. This research aims to explore the biological function and the expression of ZC3HAV1 shown in PC. In our study, PCR analysis suggested that ZC3HAV1 was expressed at a high level in PC tissues and cell lines, and high ZC3HAV1 expression was remarkably related to poor prognosis. The functional assays indicated that upregulated ZC3HAV1 accelerated PC cell proliferation along with colony formation capacities in vitro. Subsequently, ZC3HAV1 could upregulate cyclin D1 and CDK2 and also promote G1/S transition in cells of PC. What’s more, we also discovered that ZC3HAV1 promotes the migration and the invasion of PC cells. It upregulates the expression of EMT (epithelial-mesenchymal transition) relevant markers. Conversely, the functional assays showed that ZC3HAV1 knockdown significantly reduced tumorigenesis. Using bioinformatics analysis and immunoprecipitation assays we found that ZC3HAV1 could directly bind to KRAS and positively regulate its expression. Furthermore, ZC3HAV1 overexpression activated MAPK signaling by increasing p-ERK levels. Conversely, knockdown of KRAS attenuated ZC3HAV1-mediated promotion of proliferation and invasion in cells of PC. The result indicated that ZC3HAV1 was in relation to poor prognosis and accelerated the proliferation and metastasis of PC cells by regulation of KRAS. Our research may offer brand-new evidence to diagnose and treat PC in clinic.