Research Paper Volume 13, Issue 10 pp 14053—14064
Role of LINC01592 in TGF-β1-induced epithelial-mesenchymal transition of retinal pigment epithelial cells
- 1 Department of Ophthalmology, The First Hospital of Harbin Medical University, Harbin, China
Received: December 5, 2020 Accepted: March 23, 2021 Published: May 25, 2021
https://doi.org/10.18632/aging.203023How to Cite
Copyright: © 2021 Su et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Regulation of long-chain non-coding RNA01592 (LINC01592) in the process of transforming retinal pigment epithelial (RPE) cells into mesenchymal cells following induction by transforming growth factor beat 1 (TGF-β1) was investigated by interfering with LINC01592 expression in human RPE (hRPE) cells. LINC01592 expression in hRPE cells was significantly increased following treatment with 10 ng/mL TGF-β1 for 48 h. Expression of E-cadherin and Snail were decreased in hRPE cells following induction with TGF-β1 compared with the control group (P < 0.05). Following induction by TGF-β1, expression of E-cadherin, alpha-smooth muscle actin (α-SMA), and Snail were significantly lower in the LINC01592-knockdown group compared with the negative control group (P < 0.05). LINC01592 overexpression significantly enhanced the viability, proliferation, and migration of hRPE cells induced by TGF-β1 (P < 0.05). Following induction by TGF-β1, E-cadherin expression was significantly decreased and α-SMA and Snail expression were significantly increased in the LINC01592-overexpression group compared with the negative control group (P < 0.05). RPE cells induced by TGF-β1 exhibited epithelial-mesenchymal transition (EMT). Inhibiting LINC01592 expression could significantly reduce TGF-β1-induced EMT of hRPE cells. The regulatory effect of LINC01592 on EMT in hRPE cells induced by TGF-β1 provides a novel treatment for proliferative vitreoretinopathy.