Research Paper Volume 13, Issue 10 pp 13807—13821
Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1–smad/p38MAPK–lnc865/lnc556–miR-29b-2-5p–STAT3 signal pathway
- 1 Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- 2 School of Nursing, Binzhou Medical University, Yantai 264003, China
- 3 Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256602, China
Received: October 6, 2020 Accepted: March 2, 2021 Published: April 30, 2021
https://doi.org/10.18632/aging.202975How to Cite
Copyright: © 2021 Shen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Pulmonary fibrosis is a common pulmonary interstitial disease of pathogenesis without effective drugs for treatment. Therefore, discovering new and effective drugs is urgently needed. In the present study, we prepared a novel compound named acetyl oxygen benzoate engeletin ester (AOBEE), investigated its effect on experimental pulmonary fibrosis, and proposed a long non-coding RNA (lncRNA)-mediated mechanism of its action. Bleomycin-induced pulmonary fibrosis in mice exhibited that AOBEE improved forced vital capacity (FVC) and alveolar structure and inhibited α-SMA, vimentin, and collagen expression. TGFβ1-stimulated fibroblast L929 cells showed that AOBEE reduced these fibrotic proteins expression and inhibited the activated-fibroblast proliferation and migration. Whole transcriptome sequencing was performed to screen out lncRNA-lnc865 and lnc556 with high expression under bleomycin treatment, but AOBEE caused a considerable decrease in lnc865 and lnc556. Mechanistic study elucidated that AOBEE alleviated pulmonary fibrosis through lnc865- and lnc556-mediated mechanism, in which both lnc865 and lnc556 sponged miR-29b-2-5p to target signal transducer and activator of transcription 3 (STAT3). Further signal pathway inhibitors and the Cignal Finder 45-pathway reporter array illustrated that the up- and downstream pathways were TGFβ1–smad2/3 and p38MAPK, and Krüppel-like factor 4 (KLF4), respectively. In conclusion, AOBEE promoted KLF4 degradation leading to the attenuation of pulmonary fibrosis by inhibiting TGFβ1–smad/p38MAPK–lnc865/lnc556–miR-29b-2-5p–STAT3 signal pathway. We hope this work will provide valuable information to design new drugs and therapeutic targets of lncRNAs for pulmonary fibrosis treatment.