Abstract

Background: Metabonomics has been widely used to analyze the initiation, progress, and development of diseases. However, application of metabonomics to explore the mechanism of pulmonary arterial hypertension (PAH) are poorly reported. This study aimed to investigate the influence of atorvastatin (Ato) on metabolic pattern of rats with pulmonary hypertension.

Methods: PAH animal model was established using monocrotaline (MCT). The mean pulmonary artery pressure (mPAP) and right ventricular hypertrophy index (RVHI) were measured. The microstructure of pulmonary arterioles was observed by HE staining. Nuclear magnetic resonance was used to detect and analyze the serum metabolites. The levels of glycogen synthase kinase-3β (GSK-3β), hexokinase 2 (HK-2), sterol regulatory element-binding protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) in the lung tissues were measured.

Results: Ato significantly improved lung function by decreasing mPAP, RVHI, wall thickness, and wall area. Differences in metabolic patterns were observed among normal, PAH, and Ato group. The levels of GSK-3β and SREBP-1c were decreased, but HK-2 and CPT-1 were increased in the group PAH. Ato treatment markedly reversed the influence of MCT.

Conclusion: Ato significantly improved the pulmonary vascular remodeling and pulmonary hypertension of PAH rats due to its inhibition on Warburg effect and fatty acid β oxidation.