Abstract

Atherosclerosis is a chronic inflammatory disease known to be mediated by numerous factors, among which endothelial dysfunction plays a critical role. Oscillatory shear stress induces endothelial cells to lose their anti-atherosclerotic properties and downregulates the expression of the innate protective transcription factor, Krüppel-like factor 2 (KLF2), which is typically upregulated in vascular endothelial cells in response to harmful stimuli. Oxidative stress and inflammation impair endothelial function and damage their survival. Oscillatory shear stress also promotes generation of reactive oxygen species and production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), thereby further promoting endothelial dysfunction and formation of atherosclerotic plaque. A major event in the development of atherosclerotic plaque is rolling and adhesion of monocytes to endothelial cells, which is mediated by adhesion molecules including vascular cellular adhesion molecule 1 and endothelial-selectin. Expression of these molecules is also upregulated by oscillatory shear stress. Estrogen has long been recognized as a protective agent against atherosclerosis, but the mechanisms through which estrogen receptors prevent atherogenesis remain unclear. In the present study, we investigated the role of the G-coupled protein estrogen receptor (GPR30) in oscillatory shear stress- induced endothelial dysfunction. We show that agonism of GPR30 by its specific agonist G1 prevented oscillatory shear stress -induced oxidative stress markers and production of inflammatory cytokines and adhesion molecules. As a result, GPR30 activation suppresses monocytes adhesion to endothelial cells. Furthermore, we demonstrate that GPR30 prevents oscillatory shear stress- induced downregulation of KLF2 via ERK5 pathway. These findings suggest that endothelial GPR30 is potential target to suppress oscillatory shear stress mediated atherogenesis.