Abstract

Objective: To investigate the heterogeneous responses of in vitro expanded chondrocytes, which were cultured in an interleukin (IL)-1β -induced inflammatory environment.

Method: Human articular chondrocytes were expanded, in vitro, for 13 days and treated with IL-1β for 0, 24, and 48 h. Cells were collected and subjected to single-cell RNA sequencing. Multiple bioinformatics tools were used to determine the signatures that define chondrocyte physiology.

Results: Two major cell clusters with distinct expression patterns were identified at the initial phase and were with heterogeneous variation that coincides with inflammation progress. They transformed into two terminal cell clusters one of which exhibited OA-phenotype and proinflammatory characteristics through two paths, “response-to-inflammation” and “atypical response-to-inflammation”, respectively. The involved cell clusters exhibited intrinsic relationship with cell types within native cartilage from OA patients. Genes controlling cell transformation to OA-phenotype were relating to the tumor necrosis factor (TNF) signaling pathway via NFKB, up-regulated KRAS signaling and the IL2/STAT5 signaling pathway and pathways relating to apoptosis and reactive oxygen species.

Conclusion: The in vitro expanded chondrocytes under IL-1β-induced inflammatory progression behave heterogeneously. One of the initial cell clusters could transform into a proinflammatory subpopulation through a termed response-to-inflammation path, which may serve as the core target to alleviate OA progression.