Research Paper Volume 13, Issue 2 pp 1671—1685
Dietary administration of cumin-derived cuminaldehyde induce neuroprotective and learning and memory enhancement effects to aging mice
- 1 Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- 2 Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- 3 Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- 4 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- 5 Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- 6 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8587, Japan
Received: September 14, 2019 Accepted: December 25, 2020 Published: January 20, 2021
https://doi.org/10.18632/aging.202516How to Cite
Copyright: © 2021 Omari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Cuminaldehyde (CA) is one of the major compounds of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.
Cuminaldehyde (CA) is one of the major compound of the essential oil of Cuminum cyminum. The aim of this study was to evaluate the effects of CA on aging, specifically on spatial learning and memory. To achieve our objective, an in vitro study on SH-SY5Y cells was performed to analyze the neuroprotective effect of CA against dexamethasone using the MTT assay. An in vivo study was performed for evaluation of the spatial learning and memory using Morris water maze (MWM). RT-PCR was performed to quantify the expression of specific genes (Bdnf, Icam and ApoE) in the mice brain. The results obtained showed a neuroprotective effect of CA against dexamethasone-induced neuronal toxicity. The escape latency of CA-treated aged mice was significantly decreased as compared to the water-treated aged mice after 4 days of training in MWM. Moreover, CA treatment up-regulated the gene expression of Bdnf, Icam and ApoE, while it down-regulated the gene expression of IL-6. These findings suggest that CA has a neuroprotective effect, as well as a spatial learning and memory enhancement potential through the modulation of genes coding for neurotrophic factors and/or those implicated in the imbalance of neural circuitry and impairment of synaptic plasticity.