Research Paper Volume 13, Issue 3 pp 4063—4078
PRPS1-mediated purine biosynthesis is critical for pluripotent stem cell survival and stemness
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- 2 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- 3 Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
Received: February 24, 2020 Accepted: November 10, 2020 Published: January 20, 2021
https://doi.org/10.18632/aging.202372How to Cite
Copyright: © 2021 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Pluripotent stem cells (PSCs) have a unique energetic and biosynthetic metabolism compared with typically differentiated cells. However, the metabolism profiling of PSCs and its underlying mechanism are still unclear. Here, we report PSCs metabolism profiling and identify the purine synthesis enzymes, phosphoribosyl pyrophosphate synthetase 1/2 (PRPS1/2), are critical for PSCs stemness and survival. Ultra-high performance liquid chromatography/mass spectroscopy (UHPLC-MS) analysis revealed that purine synthesis intermediate metabolite levels in PSCs are higher than that in somatic cells. Ectopic expression of PRPS1/2 did not improve purine biosynthesis, drug resistance, or stemness in PSCs. However, knockout of PRPS1 caused PSCs DNA damage and apoptosis. Depletion of PRPS2 attenuated PSCs stemness and assisted PSCs differentiation. Our finding demonstrates that PRPS1/2-mediated purine biosynthesis is critical for pluripotent stem cell stemness and survival.