Research Paper Volume 13, Issue 2 pp 2436—2458
FX5 as a non-steroidal GR antagonist improved glucose homeostasis in type 2 diabetic mice via GR/HNF4α/miR-122-5p pathway
- 1 Key Laboratory of Drug Target and Drug for Degenerative Disease of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, China
Received: March 28, 2020 Accepted: October 27, 2020 Published: December 9, 2020
https://doi.org/10.18632/aging.202275How to Cite
Copyright: © 2021 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by glucose metabolic disorders, and gluconeogenesis inhibiting is a promisingly therapeutic strategy for T2DM. Glucocorticoid receptor (GR) is tightly implicated in the regulation of gluconeogenesis, although the underlying mechanism remains obscure. Here, we discovered that small molecule, 5-chloro-N-[4-chloro-3-(trifluoromethyl)phenyl]thiophene-2-sulfonamide (FX5) as a new non-steroidal GR antagonist efficiently ameliorated glucose homeostasis in db/db and HFD/STZ-induced T2DM mice. The mechanism underlying the suppression of FX5 against gluconeogenesis was highly investigated. FX5 suppressed gluconeogenetic genes G6Pase and PEPCK in mouse primary hepatocytes and liver tissues of T2DM mice. Results of mammalian one-hybrid and transactivation as well as nuclear translocation assays totally evaluated the antagonistic features of FX5 against GR. Moreover, siRNA and overexpression related assays verified that FX5 alleviated gluconeogenesis either directly by antagonizing GR or indirectly through GR/HNF4α/miR122-5p signaling pathway. Our work has presented a new mode for GR antagonist in the regulation of gluconeogenesis, which is expected to highlight the potential of FX5 in the treatment of T2DM.