Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons. More than 30 genes have been linked to ALS to date, including FUS and TARDBP, which exhibit similar roles in RNA metabolism. This study explored the use of high-resolution melting (HRM) analysis to screen for FUS and TARDBP mutation hotspot regions in 146 Chinese ALS patients, which achieved 100% detection. Two FUS mutations were observed in two different familial ALS probands, a missense mutation (p.R521H) and a novel splicing mutation (c.1541+1G>A). Five TARDBP mutations were identified in six ALS patients, including a novel 3’UTR mutation (c.*731A>G) and four missense mutations (p.G294V, p.M337V, p.G348V, and p.I383V). We found that FUS mutations were present in 1.4% of Chinese ALS patients, whereas TARDBP mutations were responsible for 4.1% of Chinese ALS cases. Here, we describe the accuracy of using highly sensitive HRM analysis to identify two novel FUS and TARDBP mutations in Chinese sporadic and familial ALS cases. Our study contributes to the further understanding of the genetic and phenotypic diversity of ALS.