Research Paper Volume 12, Issue 20 pp 20611—20622
Repetitive transcranial magnetic stimulation of the cerebellum improves ataxia and cerebello-fronto plasticity in multiple system atrophy: a randomized, double-blind, sham-controlled and TMS-EEG study
- 1 Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- 2 Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- 3 Beijing Geriatric Medical Research Center, Beijing 100053, China
- 4 Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
Received: April 23, 2020 Accepted: August 4, 2020 Published: October 21, 2020
https://doi.org/10.18632/aging.103946How to Cite
Copyright: © 2020 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Cerebellar ataxia is the predominant motor feature of multiple system atrophy cerebellar subtype (MSA-C). Although repetitive transcranial magnetic stimulation (TMS) of the cerebellum is growingly applied in MSA, the mechanism is unknown. We examined dynamic connectivity changes of 20 patients with MSA and 25 healthy controls using TMS combined with electroencephalography. Observations that significantly decreased dynamic cerebello-frontal connectivity in patients have inspired attempts to modulate cerebellar connectivity in order to benefit MSA. We further explore the therapeutic potential of a 10-day treatment of cerebellar intermittent theta burst stimulation (iTBS) in MSA by a randomized, double-blind, sham-controlled trial. The functional reorganization of cerebellar networks was investigated after the end of treatment in active and sham groups. The severity of the symptoms was evaluated using the Scale for Assessment and Rating of Ataxia scores. Patients treated with active stimulation showed an improvement of cerebello-frontal connectivity and balance functions, as revealed by a significant decrease in the ataxia scores (P < 0.01). Importantly, the neural activity of frontal connectivity from 80 to 100 ms after a single TMS was significantly related to the severity of the disease. Our study provides new proof that cerebellar iTBS improves motor imbalance in MSA by acting on cerebello-cortical plasticity.