Chronic psychological stress (PS) cumulatively affects memory performance through the deleterious effects on hypothalamic-pituitary-adrenal axis regulation. Several functions damaged in cognitive impairment-related diseases are regulated by mitochondria-associated ER membranes (MAMs). To elucidate the role of ZiBuPiYin recipe (ZBPYR) in regulating the MAM proteome to improve PS-induced diabetes-associated cognitive decline (PSD), differentially expressed MAM proteins were identified among Zucker diabetic fatty rats, PSD rats, and PS combined with ZBPYR administration rats via iTRAQ with LC-MS/MS. Proteomic analysis revealed that the expressions of 85 and 33 proteins were altered by PS and ZBPYR treatment, respectively. Among these, 21 proteins were differentially expressed under both PS and ZBPYR treatments, whose functional categories included energy metabolism, lipid and protein metabolism, and synaptic dysfunction. Furthermore, calcium signaling and autophagy-related proteins may play roles in the pathogenesis of PSD and the mechanism of ZBPYR, respectively. Notably, KEGG pathway analysis suggested that ‘Alzheimer's disease’ and ‘oxidative phosphorylation’ pathways may be impaired in PSD pathogenesis, while ZBPYR could play a neuroprotective role through regulating the above pathways. Overall, exposure to chronic PS contributes to the evolution of diabetes-associated cognitive decline and ZBPYR might prevent and treat PSD by regulating the MAM proteome.