Research Paper Volume 12, Issue 18 pp 18073—18083
MiR-141-3p ameliorates RIPK1-mediated necroptosis of intestinal epithelial cells in necrotizing enterocolitis
- 1 Department of Pediatrics, The Second Children and Women’s Healthcare of Jinan City, Jinan, Shandong Province, China
- 2 Department of Emergency, Jinan Children’s Hospital, Jinan, Shandong Province, China
Received: April 28, 2020 Accepted: June 9, 2020 Published: July 23, 2020
https://doi.org/10.18632/aging.103608How to Cite
Copyright: © 2020 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Aim: To explore the effects of miR-141-3p on intestinal epithelial cells in necrotizing enterocolitis and the underlying mechanism.
Results: The expression of miR-141-3p was significantly downregulated in serum samples of patients with NEC and LPS-treated Caco-2 cells. The in vitro assays showed that miR-141-3p mimics inhibited expression of IL-6 and TNF-α and reduced PI positive rate of the LPS-treated Caco-2 cells. Next, receptor interacting protein kinase 1 (RIPK1) was identified as the downstream molecule of miR-141-3p, and RIPK1 overexpression aggravated LPS-induced Caco-2 cell injury, which was ameliorated by miR-141-3p mimics. Finally, we found miR-141-3p mimics inhibited upregulation of necroptosis-related molecules and interaction of RIPK1 and RIPK3 in LPS-treated Caco-2 cells.
Conclusion: Our research indicated that miR-141-3p protected intestinal epithelial cells from LPS damage by suppressing RIPK1-mediated inflammation and necroptosis, providing an alternative perspective to explore the pathogenesis of NEC.
Methods: Quantitative real time-polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-141-3p in serum samples of participants and lipopolysaccharide (LPS)-treated Caco-2 cells. Cell Counting Kit-8 (CCK-8) assay, Propidium Iodide (PI) staining and detection of inflammatory cytokines were performed to evaluate the role of miR-141-3p in LPS-treated Caco-2 cells. TargetScanHuman database and luciferase reporter gene assay were utilized to confirm the direct downstream molecule of miR-141-3p. Western blot analysis was used to explore the mechanism.