Abstract

Osteosarcoma is the most common malignant bone tumor in children and young adults, and it has a survival rate of only 60% with current cytotoxic chemotherapy combined with aggressive surgery. The aim of this study was to evaluate the therapeutic efficacy of the berbamine derivative 2-methylbenzoyl berbamine (BBD24) for osteosarcoma in vitro and in vivo. We used human osteosarcoma cell lines, primary osteosarcoma cells and mouse models to evaluate the inhibitory effects of BBD24 on osteosarcoma and to determine the molecular mechanism. Our results showed that BBD24 inhibited the growth of the human osteosarcoma cell lines HOS and MG63 in a time- and dose-dependent manner. BBD24 also exhibited significant inhibitory effects on primary osteosarcoma cells. In contrast, BBD24 did not affect normal blood cells under the same conditions. Treatment with BBD24 induced apoptosis, necrosis and autophagy in osteosarcoma cells. Western blot analysis revealed that BBD24 activated the caspase-dependent pathway and downregulated the NF-kB, AKT, and ERK pathways. Finally, BBD24 treatment induced a significant inhibitory effect on the growth of osteosarcoma in nude mice. Our findings indicate that BBD24 is a multitarget inhibitor and may represent a new type of anticancer agent for osteosarcoma treatment.