Abstract

Several studies have reported that the long noncoding ribonucleic acid (lncRNA) NR2F1 antisense RNA 1 (NR2F1-AS1) affects multiple cellular pathways that are involved in tumorigenesis and tumor progression. The present study aimed to detect NR2F1-AS1 expression in non-small cell lung cancer (NSCLC), investigate the role of NR2F1-AS1 in promoting the tumorigenic behavior of NSCLC cells, and elucidate the mechanism underlying the effect of NR2F1-AS1 on NSCLC progression. Our results showed that NR2F1-AS1 expression was upregulated in NSCLC cells, and notably, its upregulation was correlated with adverse clinical characteristics and shorter overall survival in patients with NSCLC. The absence of NR2F1-AS1 functionally decreased NSCLC cell proliferation, migration, and invasion and promoted tumor cell apoptosis. In addition, the tumor growth of NSCLC cells in vivo was inhibited after NR2F1-AS1 silencing. Mechanistically, NR2F1-AS1 functioned as a competing endogenous RNA for miR-493-5p and consequently increased ITGB1 expression. Rescue assays further validated that an increased output of the miR-493-5p/ITGB1 axis could neutralize the regulatory impact of NR2F1-AS1 knockdown on the malignant phenotype of NSCLC cells. In summary, the NR2F1-AS1/miR-493-5p/ITGB1 pathway initiates pro-oncogenic behavior in NSCLC tumor progression, and the NR2F1-AS1/miR-493-5p/ITGB1 axis may provide new molecular targets for anticancer therapy against NSCLC.