Abstract

Studies indicate that mutant α-synuclein (mαSyn) is involved in the pathogenesis of Parkinson’s disease (PD). The mαSyn expression leads to the loss of dopaminergic neurons in the substantia nigra (SN) and consequent motor dysfunctions. Additionally, studies found that PD was accompanied by extensive neuroinflammation of SN. However, it remains unclear as to whether microglia participate in the mαSyn pathology. This issue is addressed by using AAV-mα-Syn (A30P-A53T) to overexpress the human mαSyn in the SN in view of establishing the PD model. Subsequently, minocycline (Mino) was used to inhibit microglia activity, and an interleukin-1 receptor (IL-1R1) antagonist was used to hinder the IL-1R1 function. Finally, immunohistochemistry was used to analyze phosphorylated αSyn (Ser129) and TH-positive cells in the SN. Dopamine levels were analyzed by high performance liquid chromatography. mαSyn overexpression in the SN induced motor dysfunction, decreased striatal dopamine levels, and increased pathological αSyn 12 weeks after AAV injection. The data demonstrated that inhibiting microglial activation or hindering IL-1R1 reversed the persistent motor deficits, neurodegeneration of the nigrostriatal dopaminergic system, and development of Lewy body pathology caused by human mαSyn overexpression in the SN. Additionally, these findings indicate that neuroinflammation promotes the loss of neuronal cells.