Research Paper Volume 12, Issue 10 pp 9365—9379
Association of cerebrospinal fluid neurogranin levels with cognition and neurodegeneration in Alzheimer’s disease
- 1 Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- 2 Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
Received: January 8, 2020 Accepted: April 17, 2020 Published: May 18, 2020
https://doi.org/10.18632/aging.103211How to Cite
Copyright © 2020 Xue et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Accumulating data suggest cerebrospinal fluid (CSF) neurogranin (Ng) as a potential biomarker for cognitive decline and neurodegeneration in Alzheimer disease (AD). To investigate whether the CSF Ng can be used for diagnosis, prognosis, and monitoring of AD, we examined 111 cognitively normal (CN) controls, 193 mild cognitive impairment (MCI) patients and 95 AD patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Correlations were tested between baseline CSF Ng levels and baseline core AD biomarkers and longitudinal glucose metabolism, brain atrophy and cognitive decline. We detected that CSF Ng levels increased with disease severity, and correlated with phosphorylated tau and total tau levels within each diagnostic group. High baseline CSF Ng levels correlated with longitudinal reductions in cortical glucose metabolism within each diagnostic group and hippocampal volume within MCI group during follow-up. In addition, high baseline CSF Ng levels correlated with cognitive decline as reflected by decreased cognitive scale scores. The CSF Ng levels predicted future cognitive impairment (adjusted hazard ratio:3.66, 95%CI: 1.74-7.70, P = 0.001) in CN controls. These data demonstrate that CSF Ng offers diagnostic utility for AD and predicts future cognitive impairment in CN individuals and, therefore, may be a useful addition to the current AD biomarkers.