Abstract

The cooperative roles of SENP1 and UBE2T in development and progression of hepatocellular carcinoma (HCC) are still unknown. The expression levels of SENP1 and UBE2T were evaluated in clinical specimens and HCC cells. The relationship between clinicopathological features and SENP1 were analyzed. We constructed the HepG2-SENP1 knockout cell model and explored the functions of SENP1 and UBE2T in HCC development. UBE2T was confirmed as a novel deSUMOylation target of SENP1. Upregulation of SENP1 and UBE2T were observed in HCC tissues and most hepatoma cell lines, and their expression levels were proved to be positively related. Knockout of SENP1 resulted in impaired growth, migration and invasion, and enhanced apoptosis in vitro, as well as inhibition of tumor growth in vivo. Furthermore, we demonstrated that SENP1 could directly deSUMOylate UBE2T thereby increasing its expression and activating Akt pathway. Functional studies showed that UBE2T overexpression or K8R mutation promoted cell growth, migration and invasion. In conclusion, our study demonstrated that SENP1 and UBE2T were positively related and functioned as tumor promoters. The carcinogenesis of SENP1 is mediated by deSUMOylation of UBE2T and the UBE2T/Akt pathway. Notably, UBE2T was identified as a novel deSUMOylation target of SENP1 in this study for the first time.