Research Paper Volume 12, Issue 2 pp 1377—1396
The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology
- 1 Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- 2 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- 3 State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- 4 CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
- 5 Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- 6 Beijing Institute for Brain Disorders, Brain Tumour Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, China
Received: October 14, 2019 Accepted: December 25, 2019 Published: January 22, 2020
https://doi.org/10.18632/aging.102688How to Cite
Abstract
Growth hormone (GH) and its anabolic mediator, insulin-like growth factor-1 (IGF-1), have a critical role in the central nervous system. However, their detailed roles in the adult human brain are not clear. In this study, structural MRIs of 48 patients with GH-secreting pituitary adenoma (GH-PA), 48 sex- and age-matched clinical Non-Functional pituitary adenoma patients (NonFun-PA) and healthy controls (HCs) were assessed using voxel-based morphometry (VBM) and region-based morphometry (RBM). Correlation analyses helped determine the relationships between serum hormone levels and brain structure. The whole-brain gray matter volume (GMV) and white matter volume (WMV) significantly increased at the expense of cerebrospinal fluid volume (CSFV) in GH-PA (Bonferroni corrected, p<0.01). The increase in GMV and reduction in CSFV were significantly correlated with serum GH/IGF-1 levels (p<0.05). VBM showed significant correlations of the GMV/WMV alteration pattern between GH-PA vs HCs and GH-PA vs NonFun-PA and widespread bilateral clusters of significantly increased GMV and WMV in GH-PA (pFDR<0.05). RBM showed obviously increased GMV/WMV in 54 of 68 brain regions (p<0.05) in GH-PA compared to HCs. Our results provide imaging evidence that serum GH/IGF-1 contributes to brain growth, which may be a potential treatment option for neurodegenerative disorders and brain injury in humans.
Abbreviations
GH: growth hormone; IGF-1: insulin-like growth factor-1; GH-PA: GH-secreting pituitary adenoma; NonFun-PA: non-functional pituitary adenoma; VBM: voxel-based morphometry; RBM: region-based morphometry; nGMV: normalized gray matter volume; nWMV: normalized white matter volume; nCSFV: normalized cerebrospinal fluid volume; TIV: total intracranial volume.