Abstract

The aging brain with mitochondrial dysfunction and a reduced adenosine 5’-triphosphate (ATP) has been implicated in the onset and progression of β-Amyloid (Aβ)-induced neuronal toxicity in AD. To unravel the function of ATP and the underlying mechanisms on AD development, APP/PS1 double transgenic mice and wild-type (WT) C57 mice at 6 and 10 months of age were studied. We demonstrated a decreased ATP release in the hippocampus and platelet of APP/PS1 mice, comparing to C57 mice at a relatively early age. Levels of Aβ were raised in both hippocampus and platelet of APP/PS1 mice, accompanied by a decrease of α-secretase activity and an increase of β-secretase activity. Moreover, our results presented an age-dependent rise in mitochondrial vulnerability to oxidation in APP/PS1 mice. In addition, we found decreased pSer473-Akt levels, increased GSK3β activity by inhibiting phosphorylation at Ser9 in aged APP/PS1 mice and these dysfunctions probably due to down-regulation of Bcl-2 and up-regulation of cleaved caspase-3. Therefore, we demonstrate that PI3K/Akt/GSK3β signaling pathway could be involved in Aβ-associated mitochondrial dysfunction of APP/PS1 mice and APP abnormal metabolism in platelet might provide potential biomarkers for early diagnosis of AD.