Research Paper Volume 11, Issue 19 pp 8556—8572
Conserved aging-related signatures of senescence and inflammation in different tissues and species
- 1 Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- 2 FLI Leibniz Institute for Age Research, Jena, Germany
- 3 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- 4 European Virus Bioinformatics Center (EVBC), Jena, Germany
Received: February 26, 2019 Accepted: September 27, 2019 Published: October 12, 2019
https://doi.org/10.18632/aging.102345How to Cite
Copyright © 2019 Barth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Increasing evidence indicates that chronic inflammation and senescence are the cause of many severe age-related diseases, with both biological processes highly upregulated during aging. However, until now, it has remained unknown whether specific inflammation- or senescence-related genes exist that are common between different species or tissues. These potential markers of aging could help to identify possible targets for therapeutic interventions of aging-associated afflictions and might also deepen our understanding of the principal mechanisms of aging. With the objective of identifying such signatures of aging and tissue-specific aging markers, we analyzed a multitude of cross-sectional RNA-Seq data from four evolutionarily distinct species (human, mouse and two fish) and four different tissues (blood, brain, liver and skin). In at least three different species and three different tissues, we identified several genes that displayed similar expression patterns that might serve as potential aging markers. Additionally, we show that genes involved in aging-related processes tend to be tighter controlled in long-lived than in average-lived individuals. These observations hint at a general genetic level that affect an individual’s life span. Altogether, this descriptive study contributes to a better understanding of common aging signatures as well as tissue-specific aging patterns and supplies the basis for further investigative age-related studies.