Research Paper Volume 11, Issue 15 pp 5319—5333
Association of basal metabolic rate and fuel oxidation in basal conditions and during exercise, with plasma S-klotho: the FIT-AGEING study
- 1 EFFECTS-262 Research Group, Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
- 2 PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
Received: May 22, 2019 Accepted: July 11, 2019 Published: August 7, 2019
https://doi.org/10.18632/aging.102100How to Cite
Copyright © 2019 Amaro-Gahete et al. This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
S-klotho, the shed form of α-klotho, is thought to be an ageing suppressor with functions related to the physiology of energy metabolism. However, it remains unknown whether ageing biomarkers such as S-klotho and/or chronological ageing are associated in any way with basal metabolic rate (BMR) and fuel oxidation in basal conditions and during exercise. The present work investigates the association of BMR and fuel oxidation in basal conditions and during exercise, with plasma S-klotho in middle-aged, sedentary adults. BMR was measured by indirect calorimetry in 74 such subjects (53% women; age 53.7±5.1 years) following standard procedures, and their fuel oxidation estimated via stoichiometric equations. The maximal fat oxidation during exercise (MFO) and the intensity of exercise that elicits MFO (Fatmax) were determined using a walking graded exercise test. No relationship was seen between BMR and plasma S-klotho (P>0.1), although both basal fat oxidation and MFO showed positive associations with this protein (both P<0.001); these relationships persisted after controlling for age, sex and fat mass. However, no significant associations were seen between BMR, basal fat oxidation or MFO and chronological age (all P>0.1). The present findings suggest that basal fat oxidation and MFO are strongly associated with plasma S-klotho in middle-aged sedentary adults. These results support the idea that metabolic flexibility is a powerful predictor of biological ageing.