Research Paper Volume 11, Issue 5 pp 1342—1355
MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells
- 1 Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
Received: August 14, 2018 Accepted: February 17, 2019 Published: March 1, 2019
https://doi.org/10.18632/aging.101835How to Cite
Abstract
MicroRNAs (miRNAs) have been implicated in β cells dysfunction. Previous studies indicated that miR-127 was specifically abundant in β cells and one of its target genes, Kif3b, promoted cell proliferation. However, the impact of the miR-127-Kif3b axis on β cells remains unknown. In this study, we revealed that miR-127 level was declined both in islets from the mice with a high-fat diet and in MIN6 cells with elevated glucose treatment. The elevated level of miR-127 attenuated β cell proliferation by repressing Kif3b expression without affecting apoptosis and cell cycle, and it dampened insulin secretion. Moreover, β cell-derived miR-127 could also affect the islet endothelial cell-line, MS1, in vitro via the transfer of extracellular vesicles (EVs). Treating MS1 cells with the EVs secreted by MIN6 cells exhibited a higher ability in cell migration and tube formation. However, this effect was abolished by the miR-127 inhibitor co-cultured with EVs-treated MS1 cells. Thus, we define that miR-127 is a crucial regulator of insulin secretion and cell proliferation in pancreatic β cells as well as a potential functional regulation factor in islet endothelial cells.
Abbreviations
EVs: extracellular vesicles; HFD: high fat diet; NFD: normal fat diet; T2D: type 2 diabetes; miRNAs: MicroRNAs; NTA: nanoparticle tracking analysis; TEM: transmission electron microscopy; qRT-PCR: quantitative real-time PCR; GSIS: glucose stimulated insulin secretion; CCK-8: cell counting kit-8.