Research Paper Volume 11, Issue 2 pp 549—572
S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α
- 1 Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
Received: September 1, 2018 Accepted: January 5, 2019 Published: January 23, 2019
https://doi.org/10.18632/aging.101760How to Cite
Abstract
Senescent cells display the senescence-associated secretory phenotype (SASP) which plays important roles in cancer, aging, etc. Cell surface-bound IL-1α is a crucial SASP factor and acts as an upstream regulator to induce NF-κB activity and subsequent SASP genes transcription. IL-1α exports to cell surface via S100A13 protein-dependent non-classical secretory pathway. However, the status of this secretory pathway during cellular senescence and its role in cellular senescence remain unknown. Here, we show that S100A13 is up-regulated in various types of cellular senescence. S100A13 overexpression increases cell surface-associated IL-1α level, NF-κB activity and subsequent multiple SASP genes induction, whereas S100A13 knockdown has an opposite role. We also exhibit that Cu2+ level is elevated during cellular senescence. Lowering Cu2+ level decreases cell surface-bound IL-1α level, NF-κB activity and SASP production. Moreover, S100A13 overexpression promotes oncogene Ras-induced cell senescence (Ras OIS), Doxorubicin-induced cancer cell senescence (TIS) and replicative senescence, while impairment of non-classical secretory pathway of IL-1α delays cellular senescence. In addition, intervention of S100A13 affects multiple SASP and cellular senescence mediators including p38, γ-H2AX, and mTORC1. Taken together, our findings unveil a critical role of the non-classical secretory pathway of IL-1α in cellular senescence and SASP regulation.