Abstract

In this study, microRNA (miRNA) profiles in postovulatory aging mouse oocytes were analyzed by microarray screening and RT-qPCR. Hierarchical cluster analysis on the microarray data and KEGG pathway enrichment analysis on the mRNAs targeted by differentially expressed (DE) miRNAs between two adjacent egg-ages suggest that while only a mild alteration in miRNA expression occurred from 13 to 18 h, a great change took place from 18 to 24 h post hCG injection. Theoretical exploration on functions of the predicted target genes suggest that KEGG pathways enriched by 13-18 h DE miRNAs are correlated with early events of oocyte aging while pathways most enriched by 18-24 h or 24-30 h DE miRNAs are correlated with the late symptoms of aged oocytes. Experimental verification on functions of the key proteins predicted by the KEGG analysis and injection of miR-98 mimics or inhibitors further confirmed that miRNAs played stimulatory/inhibitory roles in postovulatory oocyte aging. In conclusion, marked changes in miRNA expression are associated with significant alterations in function and morphology of postovulatory aging oocytes.